CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0417 INFORMATION AND COMMUNICATION TECHNOLOGY

0417/21

Paper 2 (Practical Test A), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

06 0417 21 MS v3.doc

Offshore Wind Energy

offshore wind farm being installed in

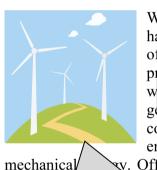
Denmark in 1991. Europe has taken the

lead due to strong wind resources, shallow water in the North Sea and the Baltic Sea,

and Government recognition of the role

offshore wind will play to meet renewable

Header


Centre No left, file name right aligned 1 mark

Report by: Candidate Name

Title

Data entry 100% accurate, centre aligned 1 mark 26 pt, sans-serif, bold & underlined 1 mark

A Global Power Source

Wind harnesses the the wil of

> New subhead 100% accurate & correct location 1 mark All subheads (6) formatted centre, sans-serif, 14 pt, bold, u/l 1 mark

kinetic converting energy into Offshore wind power as the future of growing in North America, Canada and Asia.

Onshore wind energy potential is

Appropriate image in correct location Text wrap, aligned left & top

Resized 3.5 cm high, aspect ratio maintained

power. It is growing at the rate of 30% annually and is extensively used in Europe, Asia and the United States.

From an emerging fuel source twenty years ago, wind of transformed.

into a business.

25/10/2011

is widely

Body text 3 columns, 1.5 cm col spacing

> 12 pt. serif font Single line space, fully justified

1 mark 1 mark 1 mark

1 mark

1 mark

1 mark

concentrated in agricultural and industrial north-western Europe. The largest potential is found in low depth the North Sea, the Baltic Seas and tne Atlantic Ocean, with some local of the in areas

opportunities Mediterranean and Black Seas. The deep offshore potential is even larger but costs mean development is slow.

Footer

bridge International Examinations 2013

Date left, Name & Cand Number right

1 mark

Subtitle

Data entry 100% accurate, 18 pt sans-serif 1 mark Italic, bold, right aligned 1 mark

potential equal to three times its electricity demand. Surrounded by a large shallow continental shelf with good access to available strong and constant offshore winds it is ideally placed to exploit the enormous potential for offshore wind and offshore wind power farm development. The sea is relatively shallow around the land masses allowing for turbine foundations to be driven into the seabed rather than attempting to accomplish a complicated floating system of turbines. To date, 9 offshore wind farms have been built around the UK coastline with 330 offshore turbines, equating to 778.4 MW of installed capacity. The UK has a target of securing 15% of all its energy needs for electricity, heat and transport from renewable sources

hd farms in the UK hore of power are:

Name, Candidate Number

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

Centre Number v3.doc

06 0417 21 MS

Name	Sea	Capacity
Thanet	North Sea	300
Gunfleet Sands	North Sea	172
Inner Dowsing	North Sea	120
Lynn	North Sea	97
Kentish Flats	North Sea	90

_	_	
\mathbf{a}	п	extract

Inserted in correct place within column width	1 mark
UK, Operational, North Sea	1 mark
Capacity >=90	1 mark
Descending order of Capacity	1 mark
Fields Name, Sea, Capacity in order	1 mark

Asia will soon overtake Europe as the region with the largest capacity.

Europe's offshore wind potential is huge with the technical potential of offshore wind being six to seven times greater than projected electricity demand. At the end of 2010 there were 1.136 offshore wind turbines installed and connected to the grid on 45 wind farms in 9 countries with an operating capacity of 2,396 MW. The 9 European countries with offshore wind power capacity in 2010 were:

	Offshore wind power in Europe					
	Country	Capacity (MW)				
	UK	1341				
	Denmark	854				
	Netherlands	249				
	Belgium	195				
	Sweden	164				
	Germany	92				
1	Finland	26				
	Ireland	25				
	Norway	2.3				
		·				

but via undersea cables. The wind is much more reliable at sea, giving better and more consistent output and there is far less

public opposit Bullets The main bend

include:

Square bullets applied 1.5 line spacing

1 mark 1 mark

- Higher wind speeds
- More often windy
- Less turbulence offshore
- Minimal visual impact

Table Correct place, 2 cols 11 rows, within column width 1 mark Data entry 100% accurate 2 marks W Top row cells merged 1 mark lai Top row only text bold and centred 1 mark 30 Font matches body text 1 mark Top two rows only shaded grey 1 mark MW) was the largest project under zeneranon. construction. These projects will be

dwarfed by subsequent wind farms which are planned, including Dogger Bank at 9,000 MW, Norfolk Bank (7,200 MW), 'se impact

sea is steadier, more not blocked by obstacles tains, trees and buildings, butput and more consistent This results in higher

electricity yield per wind turbine.

Wind Energy Future

Over the past 10 years global wind power grow at an over 30%. technology costs have hodern wind er ratings,

Offsho than or transpd

and Irish Sea (4,200 M).

© Camb

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

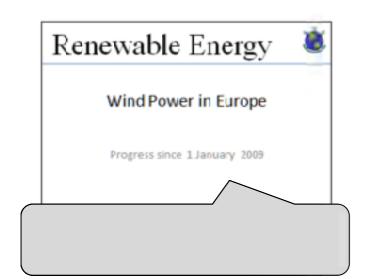
Centre Number v3.doc

06_0417_21_MS

efficiency and reliability. Countries all over the world are setting targets for wind power. It is estimated that 40,000 wind turbines will be installed in the next 10 years.

The European Union has set ambitious targets to provide 20% of Europe's energy from renewable sources by 2020. As a proven source of clean, affordable energy, wind resources have a vital role to play in realising these goals.

Conventional fuels have a dangerous impact on the climate and the drive for a future of cleaner, more sustainable energy technologies means wind power will go from strength to strength.


25/10/2011 Name, Candidate Number

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

Centre Number 06_0417_21_MS v3.doc

Power from N	orth and	Irish Seas ——	Title – d	correct, 100	% accurate 1	l mark				
Country	ID	Name	Number	Distance	Operational	Capacity	Height	Sea	Turbine_Ca	pacity
Belgium	BE06	Belwind	66	46.0	Yes	330	117.0	North Sea		5.0
Belgium	BE02	Bligh Bank	55	42.0	Yes	165	117.0	North Sea	//	/ 3.0
Belgium	BE07	C-power II	60	27.0	Yes	216	130.0	North Sea		3.6
Belgium	BE04	Eldepasco	36	37.0	Yes	216	130.0	North Sea		6.0
Belgium	BE05	The	20/			30	157.0	North Se		5.0
Denmark	DK02	3 records added, 100 Sorted by Country, the			3 marks	160	Calculated	d field		2.0
Denmark	DK05	Specified fields in co		;	1 mark 1 mark	209	Heading 10	00% accurate	1 mark	2.3
Germany	DE01	All Data and labels all fu			1 mark	60	Calculated		2 marks	5.0
Germany	DE09	En Landscape, 1 page v	•		1 mark	5	Formatted	to 1 dp	1 mark	5.0
Germany	DE10	Hooksici		V. -	es	5	151.0	North Sea		5.0
Ireland	IEO1	Arklow Bank	7	10.0	Yes	25	129.0	Irish Sea		3.6
Netherlands	NL02	Egmond aan Zee	36	10.0	Yes	108	115.0	North Sea		3.0
Netherlands	NL01	Princess Amalia	60	23.0	Yes	120	99.0	North Sea		2.0
Norway	NR01	Hywind	1	10.5	Yes	2	106.2	North Sea		2.0
United Kingdom	UK04	Barrow	30	10.0	Yes	90	120.0	Irish Sea		3.0
United Kingdom	UK10	Beatricee Demonstration	2	23.0	Yes	10	170.0	North Sea		5.0
United Kingdom	UK14	Blyth	2	1.0	Yes	4	95.0	North Sea		2.0
United Kingdom	UK07	Burbo Bank	Sea	arch			137.0	Irish Sea		3.6
United Kingdom	UK11	Gunfleet Sands			ea or Irish Sea	1 mark	120.3	North Sea		3.6
United Kingdom	UK09	Inner Dowsing		erational = `		1 mark	133.5	North Sea		4.0
United Kingdom	UK06	Kentish Flats	<u></u>	0.5	res		J 115.0	North Sea		3.0
United Kingdom	UK08	Lynn	27	5.2	Yes	97	133.5	North Sea		3.6
United Kingdom	UK02	North Hoyle	30	8.0	Yes	60	107.0	Irish Sea		2.0
United Kingdom	UK03	Rhyl Flats	25	8.0	Yes	90	133.5	Irish Sea		3.6
United Kingdom	UK05	Robin Rigg	60	_ 65_	Vac	216	12 5.0	Irish Sea		3.6
United Kingdom	UK01	Scroby Sands	30		lated Sum of N		· · · · · · · · · · · · · · · · · · ·	North Sea		2.0
United Kingdom	UK19	Thanet	100	Labe	100% accurate	e 1 mar	k .0	North Sea		3.0
United Kingdom	UK21	Walney	51	14.11	Yes	184	13/.0	Irish Sea		3.6
	Total turb	ines in operation	1002							
			Cand	idate details	s on right 1 m	nark	Name, Cer	ntre Number, Cand	didate Number	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

Renewable Energy

KEYFACTS

- Mustly used to generate electricity
- Fastest growing segment of all renewable energy sources
- Favourable climate conditions in Europe
- A pollution free energy source

interferent bestehn vertre bere

Renewable Energy

PRODUCTION

- 142,000,000,000 kWh of electricity produced
- Equal to 4.2% of EU's electricity demand
- Equivalent to the needs of 35 million EU households

there's the bear and the bear a

Renewable Energy

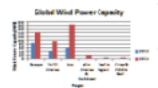
INVESTMENT

- €11 billion invested in wind turbines
- Saved fuel costs of €5.4 billion
- Avoided CO₂ costs of €2.275 billion

Secretaria de comunicación (un

Renewable Energy

CO2


- Avoided 91 million tornes of CO₂
- Equivalent of taking 43 million cars off the roads
- Equal to 27% of the EU-15s Kyoto obligation

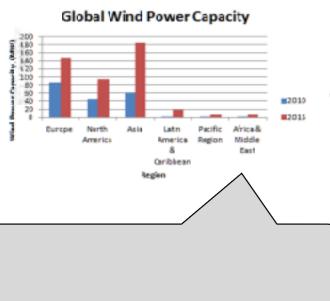
interferent fertigen erter fan

Renewable Energy

GROWTH PREDICTIONS

- China will be the fastest growing market
- Asia will overtake Europe as the region with the largest sapacity

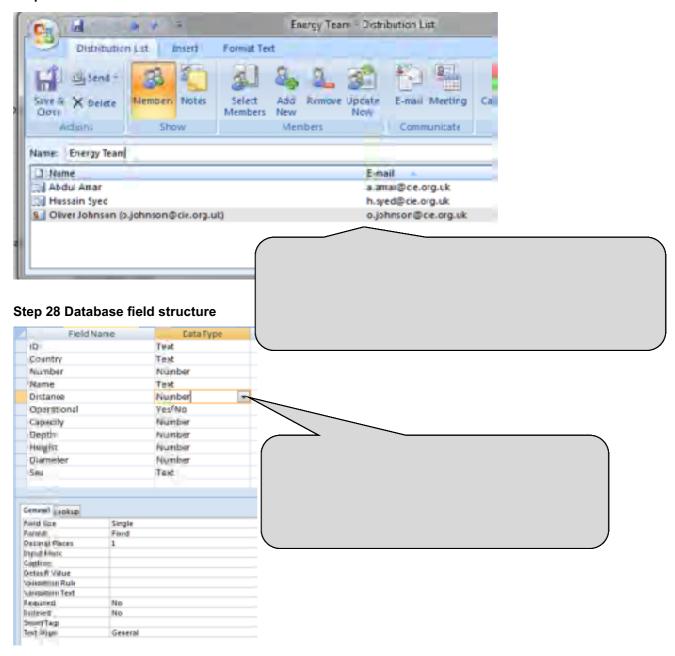
the state of the s


© Ca

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

Renewable Energy

GROWTH PREDICTIONS



- China will be the fastest growing market
- Asia will overtake Europe as the region with the largest capacity

Cente Number, Candidate number, Name

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0417	21

Step 2 & 3 Contact details and distribution list

