
 Topic support guide 9626 Topic 19 Programming for the web 1

Topic support guide

Cambridge International AS & A Level

Information Technology

9626

For examination from 2017

Topic 19 Programming for the web

Cambridge International Examinations retains the copyright on all its publications.

Registered Centres are permitted to copy material from this booklet for their own

internal use. However, we cannot give permission to Centres to photocopy any

material that is acknowledged to a third party even for internal use within a Centre.

© Cambridge International Examinations 2016

Version 1.0

Introduction

Contents

Introduction ... 2

How to use this guide .. 2

Learning objectives ... 2

Prior knowledge and preparation ... 2

1. Key terms .. 3

2. Theory .. 4

2.1. Introduction ... 4

2.2. Comments .. 4

2.3. Alerts .. 4

2.4. Variables ... 4

2.5. Getting user input – prompt boxes .. 5

2.6. Displaying output .. 5

2.7. Functions .. 6

2.8. Operators .. 7

2.9. Conditional statements ... 9

2.10. Loop statements .. 10

2.11. Getting user input – input boxes .. 11

3. Worked examples ... 12

3.1. Developing scripts .. 12

3.2. Debugging errors .. 13

3.3. Alerts .. 13

3.4. Variables ... 14

3.5. Getting user input – prompt boxes .. 15

3.6. Displaying output .. 16

3.7. Functions .. 18

3.8. Operators .. 21

3.9. Conditional statements ... 22

3.10. Loop statements .. 25

3.11. Displaying output – further practice with bookmarks .. 27

3.12. Getting user input – input boxes .. 29

4. Further resources ... 32

5. Class and homework activities .. 33

5.1. Theory questions .. 33

5.2. Programming tasks ... 35

Introduction

2 Topic support guide 9626 Topic 19 Programming for the web

Introduction

How to use this guide

The aim of this guide is to facilitate your teaching of Cambridge International AS and A Level

Information Technology, syllabus topic 19, Programming for the web. The guidance and activities

in this resource are designed to help teachers devise programmes of study for using JavaScript to

demonstrate object-based programming techniques and adding interactivity to web pages that

provide teaching time devoted to theory work and opportunities for practical exercises.

Section 1 lists some key terms used in this topic and their definitions. Section 2 Theory provides an

introduction to JavaScript programming techniques. Section 3 provides worked examples of

programming tasks together with programming challenges to help learners understand some of the

principles involved and the methods required to carry out practical tasks. Section 4 lists some

further resources relevant to the topic for you or your learners to use. Section 5 provides theory

questions and practical tasks that can be used as class or homework activities.

To write the JavaScript code we'll be looking at in this guide, you need a text editor and a web

browser. All the files used and created in this guide are available within the zip file in the location

from which you accessed this document.

Learning objectives

After reading this guide you should be able to teach the following learning objectives:

 demonstrate a range of object-based programming techniques
- recognise data types (including: number, string, Boolean, array, object)
- assign and understand the term variables
- carry out calculations and basic string manipulation
- use arrays
- use comparison and logical operators
- use conditional statements (including: if, else, else if, switch)
- use loops (including: for, for/in, while, do/while)
- use iterative methods
- create functions
- trap errors
- control events
- create html forms to interact with the user
- add comments to explain JavaScript code

 add interactivity to webpages

 explain JavaScript terms and programming techniques.

Prior knowledge and preparation

Before you begin teaching this topic:

 Make sure you are familiar with the fundamentals of html and css.

 Make sure you understand the concepts and techniques shown in Section 2 Theory

 Undertake some further programming tasks using the resources suggested. This will

provide depth to your knowledge and enable you to encourage learners to explore

these topics further than the examples provided.

 Try carrying out all the tasks and develop some extension material or additional tasks.

 Topic support guide 9626 Topic 19 Programming for the web 3

1. Key terms

Word/phrase Meaning

alert
Displays a box containing a message to the user / containing
results

array

Arrays are indicated by square brackets and are used to store
multiple values in a single variable, each of which can be
accessed by referring to an index number. Array items are
separated by commas.

bookmark
An identifier put into the body of the html code to specify
where script results are placed in the webpage

Boolean Booleans can only have either of two values: true or false.

conditional statement
Allows a program to perform different actions depending on
the result of a condition; the most commonly used are: if,
if…else, if…else if, switch

confirm
Displays a box that the user needs to click to continue /
cancel

function
A block of code designed to perform a particular task that can
be called anywhere in a script, and any number of times

global variable
Variable that can be used in functions other than the function
in which it is declared or other parts of the script

local variable
Variable available only within the function in which it is
declared

loop statement
Repeats a task until a certain condition is met; the most
commonly used are: while, do…while, for, for…in

number
Numbers are one of JavaScripts data types. They can be
written with or without decimals, and can use scientific
notation for extra large or extra small numbers.

object

Objects are indicated by curly brackets and are containers for
properties called named values. For example an object such
as a blue bicycle would have a named value of colour:”blue”.
An objects properties use the following convention –
name:value, name:value, name:value, etc.

operator
Symbol that indicates a specific process: arithmetic, string,
assignment, comparison, logical, or conditional

pop-up Alert, Prompt, Confirm boxes

prompt
Dialog box that asks the user for input and assigns the input
to a variable

script
A high-level programming language (set of instructions), such
as JavaScript that is ‘interpreted’ rather than compiled (e.g.
when a web page is displayed)

string

A string is text like a letter, word or phrase. Strings are
indicated by quote marks and either single or double quote
marks can be used. Quote marks can be used within a string,
but they mustn’t match the quote marks that surround the
string.

variable
Named container to which data is assigned; can contain the
following data types: text (strings), number, boolean, array,
object

Theory

4 Topic support guide 9626 Topic 19 Programming for the web

2. Theory

2.1. Introduction

JavaScript is a scripting language that is primarily used for creating interactive features on webpages

such as menus, form validation and changing images. It is the only language that is used to build

applications on every platform: web, mobile, desktop, kiosk, TV etc.

As JavaScript is currently the only scripting language supported by every major web browser it is very

widely used. When code is rendered (interpreted) by your web browser, as JavaScript usually is, it is

called a ‘client-side’ script. Although this guide will address client-side scripting only, JavaScript can

also be used as a very powerful server language, running as a ‘server-side’ script on a web server to

generate html documents.

JavaScript is easy to learn. It has a straightforward syntax that is highly logical. It has fewer

components than most other languages, and that makes it faster to learn. This introduction covers the

basics – enough to get started with developing scripts to make web pages interactive. For every topic

covered there are many more issues and options.

2.2. Comments

Comments are included by programmers to explain various sections of a script. Text after ‘//’ is ignored

by the browser until the end of the line. Larger comments on multiple lines can be commented out

using the /*…*/ method as in CSS:

/* When more lines are

Needed for a longer

explanation of a section of the script*/

2.3. Alerts

Alerts are used to give the user messages, for example, if they did not fill in all the fields in a form.

They are also a useful way of debugging the code: if a script doesn’t seem to work, you can insert

alerts to see how far the code gets processed before the error occurs. They can also be useful in

displaying the value of a variable at important points. The syntax for an alert is:

alert ("User message");

Notice the ‘;’ at the end of the statement. Statements are the sentences of JavaScript. Semicolons are

the full stops. (Spaces and line-breaks are ignored.) The semicolons can sometimes be missed out but

you should get in the habit of using them after every statement because omitting them can cause

unexpected problems.

2.4. Variables

Like other programming languages, JavaScript uses variables. Variables are like named containers.

You can place data into these containers and then refer to the data simply by referring to the name of

the container.

Variables must be declared with the var keyword before they are used. (We’ll see an exception to this

rule in Section 2.7.)

Theory

 Topic support guide 9626 Topic 19 Programming for the web 5

Examples:

var price var Price = "$2.00" var length1=5;

var name var Name = ‘Pablo’ var length2=7;

var answer_1 var Answer_1 = 3.9 var Perimeter = 2*(length1 + length2);

Array variables:

var fruits = new Array("Apple","Banana","Cherry","Damson");

or var fruits = ["Apple","Banana","Cherry","Damson"];

 Variable names are case sensitive, so ‘price’ and ‘Price’ are different variables

 Variable names must begin with a letter or an underscore character. For example, ‘1stvalue’ is an

invalid variable name but ‘_1stvalue’ is a valid one

 The variables in the first column of the examples above are undefined, i.e. have no value assigned

to them yet (the values are often assigned by user input)

 The variables in the second and third columns have been initialised – the values are assigned in

the declaration

 Variables can be: strings (text), numbers, boolean (true/false), arrays or objects

 Text strings need to be written inside double or single quotes

 Numbers can be integers or decimals

 Numbers inside quotes will be treated as strings

 There are a number of ‘reserved words’ that cannot be used for variables.

 You can assign a value to a variable using a calculation (as in var Perimeter above).

There is more information on variables in Section 2.7, and arrays in Section 2.10.

2.5. Getting user input – prompt boxes

One method to obtain input from users is to use a prompt dialog box. This presents a pop-up dialog on

the webpage that prompts the user for the input. The user fills in the field and then clicks ‘OK’. The user

input is assigned to a variable. The syntax is:

var value1 = prompt ("explanatory text", 0);

 The variable is declared and the value set in one go.

 There are two parameters: the first parameter is the explanatory text that will be displayed and the

second is the default value of the variable.

 Unlike other programming languages you don't have to tell JavaScript what type of value the

variable will hold. JavaScript has ‘dynamic datatypes’, i.e. the type of a variable can change during

the execution of a script and JavaScript takes care of it automatically.

2.6. Displaying output

To display output at a specific place on the webpage, put a ‘bookmark id’ into the body of the html

code, where the output needs to be displayed:

<body>

 ...

<h2 id="Output here"></h2>

 ...

</body>

Theory

6 Topic support guide 9626 Topic 19 Programming for the web

 The id= “Output here" bookmark is in the body of the html, not the script section so the html

comment syntax is used

 The id is in style h2 so the result of the script will be displayed in style h2.

Setting the value of a .innerHTML property using the document.getElementById() method

enables us to place results at a bookmark inside a webpage:

document.getElementById("Output here").innerHTML = 5 + 7;

2.7. Functions

A JavaScript function is a block of reusable code designed to perform a particular task. Functions can

be called anywhere in a script, and any number of times. Creating a function means that the code does

not have to be rewritten every time. Functions also allow programmers to divide long scripts into a

number of small and manageable routines. We have already seen functions such as alert(). We can

write our own functions as well.

Functions need to be defined. The syntax is:

function name (parameter1, parameter2, …) { code statements to be executed; }

2.7.1 Calling functions

Functions do not automatically execute when the webpage is loaded or refreshed. Calling a function

with a pop-up button therefore provides a useful method of activating scripts by interacting with the

webpage. The button has to be displayed on the webpage, so it goes into the body section of the html:

<button type="button" onClick="name()">Click me</button>

 There are three types of button. This example uses "button", the standard clickable button

 onClick will execute the name()function

 ‘Click me’ is the text displayed on the button.

2.7.2 Local and global variables

Variables that are available only within a function are local variables. Variables that can be used in

other functions or other parts of the script are global variables. Global variables need to be declared

without the ‘var’ keyword. Here, value1 is declared as a global variable in input() so that it can be

used by the function output():

function input(){ value1 = 1;}

function output(){alert(value1);}

If var value1 had been used, this would declare a local variable and value1 would not be available

for the output()function to use.

In fact, variables can always be declared in this way. You just need to be careful about whether you

need local or global variables.

Theory

 Topic support guide 9626 Topic 19 Programming for the web 7

2.8. Operators

JavaScript has a number of types of operators. A full coverage of these operators is beyond the scope

of an introduction but the following are some of the ones we might need most:

 Arithmetic operators

 String operators

 Assignment operators

 Comparison operators and Logical operators

 Conditional operator.

2.8.1 Arithmetic operators

Operator Description Example

+

Addition

Note: JavaScript uses the ‘+’ sign in
two ways. If it thinks the variables are
numbers, it will add them. Otherwise it
will treat the variables as text and
concatenate.

function multiply()

{

alert ("The answer is " + (value1 *

value2))

}

-

*
/

Subtraction

Multiplication

Division

The use of these operators should be clear from
the addition example.

++

--

Increment

Decrement

These operators are useful for counters
in loops

The ‘++’ operator adds 1 to the value of a variable.
e.g. if valueX =15 then valueX++ = 16

The – operator subtracts 1 from the value of a
variable.
e.g. if valueX=15 then valueX-- = 14

%
Modulus (used for remainder or ‘clock’
arithmetic)

e.g. if valueX=15 then valueX%12 = 3
(15 mod 12= 3)

2.8.2 String operators

Operator Description Example

+

Concatenate
This is the default mode for the ‘+’ sign.
Unless JavaScript thinks the variables
are numbers it will concatenate the
variables.

If valueX = "Hi" and valueY = "there"

valueX + valueY = "Hithere"
valueX + "" + valueY = "Hi there"

+= Assign concatenated value to a variable
valueX += valueY assigns "Hithere" to valueX
value X += "" += valueY assigns "Hi there" to
valueX

Theory

8 Topic support guide 9626 Topic 19 Programming for the web

2.8.3 Assignment operators

For these examples let’s set valueX = 6 and valueY = 5

Operator Description Example

+= Assign sum to a variable
valueX += valueY assigns valueX + valueY to valueX
(valueX=11)

-=
Assign difference to a
variable

valueX -= valueY assigns valueX - valueY to valueX
(valueX=1)

*= Assign product to a variable
valueX *= valueY assigns valueX * valueY to valueX
(valueX=30)

/= Assign quotient to a variable
valueX /= valueY assigns valueX / valueY to valueX
(valueX=1.2)

2.8.4 Comparison and logical operators

Comparison and logical operators return (produce a result of) true or false.

In the following examples let’s set valueX = 6 and valueY = 5

Operator Description Example

==

!=

Equal to

Not equal in value

valueX == 6 returns true
valueX == 5 returns false
valueX != 5 returns true
valueX == valueY returns false
valueX != valueY returns true

===

!==

Equal value and equal type

Not equal in value OR not equal in type

valueX === "6" returns false (because "6" is
text)
valueX !== "6" returns true

>
>=
<
<=

Greater than
Greater than or equal to
Less than
Less than or equal to

valueX > 6 returns false
valueX >=6 returns true
valueY < 5 returns false
valueY <= 5 returns true

&&

||

Logical AND

Logical OR

valueX <= 6 && valueY <= 5 returns true
valueX < 6 && valueY <=5 returns false

valueX >6 || valueY = 5 returns true
valueX >6 || valueY < 5 returns false

2.8.5 Conditional operator

Operator Description Example

?

The conditional operator assigns a value
to a variable based on a condition. The
syntax is:

variablename = (condition) ?

value1:value2

In the following example, depending on

whether a user guess is on target or not, they

get a different message:

var result = (guess == target) ?

"Brilliant! Good guess.":"Sorry your

guess was wrong.";

Theory

 Topic support guide 9626 Topic 19 Programming for the web 9

2.9. Conditional statements

Conditional statements allow a program to perform different actions depending on the result of a

condition: a different block of code is run for each decision branch. In JavaScript there are four

commonly used conditional statements:

if Specifies a block of code to be executed, if a required condition is true
if … else Specifies an alternative block of code to be executed if the same condition is

false
if … else if Specifies a new condition to test if the first condition is false
switch Specifies alternative blocks of code to be executed

2.9.1 ‘if’ statements

The ‘if’ statement is used to test for a certain condition, then do something (or not if the condition is not

met). They are sometime known as ‘if (then)’: the ‘then’ is implied but not included in the code. They

enable the program to behave differently depending on, for example, user input or some result within

the script. The syntax is:

if (some condition is true) { execute these statements; }

 The statement starts with ‘if’ which must be lower case

 There is a condition in brackets () which should give a true/false result

 There is a set of statements between curly brackets { } which will be executed if the condition is true

 Conditions can be combined using the logical operators ‘AND’ and ‘OR’ (‘&&’ and ‘||’) that were

explained in Section 2.8

 The spacing is not important – it's included for readability

 After the (condition), there is no ";".

2.9.2 ‘if … else’ statements

‘If … else’ statements allow the program to run an alternative block of code if the condition is NOT met.

The syntax is:

if (some condition is true) { do something; }

 else { do something else; }

Note that the ‘else’ part only runs if the first part (i.e. the ‘do something’) part does not.

2.9.3 ‘if … else if’ statements

The ‘if...else if’ statement is just an extended form of ’if…else’ that allows JavaScript to make a correct

decision out of several conditions:

if (condition 1){statement(s) to be executed if condition 1 is true;}

 else if (condition 2){statement(s) to be executed if condition 2 is true;}

 else if (condition 3){statement(s) to be executed if condition 3 is true;}

 else {statement(s) to be executed if no expression is true;}

The code is fairly easy to understand. The relevant code statements are executed based on which
condition returns true. If none of the conditions is true, then the final ‘else’ block is executed as a form
of error trapping.

Theory

10 Topic support guide 9626 Topic 19 Programming for the web

2.9.4 ‘switch’ statements

The ‘switch’ statement is used to select one of many blocks of code to be executed, depending on the

value of a variable. Using a single switch statement makes it easier to understand the logic of

branching than using several ‘if...else if’ statements to create multiple branches.

JavaScript checks for each condition until a match is found. If nothing matches, a default condition will

be used. The syntax is:

switch (resulting value of a variable)

 {

 case condition 1: statement(s); break;

 case condition 2: statement(s); break;

 …

 case condition n: statement(s); break;

 default: statement(s)

 }

 The switch expression is evaluated once

 The value of the variable is compared with the values of each case

 If there is a match, the associated block of code is executed

 If there is no match the default statement is executed

 The break statements indicate the end of a particular case. It is needed to stop the subsequent

code from executing.

2.10. Loop statements

Loop statements repeat a task until a certain condition is met. Using a loop statement reduces the

number of lines of code and complexity of the script when the same code needs to be executed

multiple times, often with a different value for a variable(s). Loops are an extremely powerful aspect of

programming and a good grasp of them is essential.

There are four important types of loop in JavaScript:

while Loops through a block of code while a specified condition is true
do … while Loops through a block of code while a specified condition is true;

the code will be executed at least once
for Loops through a block of code a specified number of times
for … in Loops through the properties of an object

2.10.1 ‘while’ loop

This is the simplest of the loop types. The ‘while’ loop keeps doing something while a certain condition

is met. The syntax is:

while (some condition is true) { execute these statements; }

2.10.2 ‘do … while’ loop

The ‘do ... while’ loop is similar to the ‘while’ loop except that the condition check happens at the end of

the loop. This means that the loop will always be executed at least once, even if the condition is false:

do { statement(s) to be executed } while (some condition is true);

Theory

 Topic support guide 9626 Topic 19 Programming for the web 11

2.10.3 ‘for’ loop

The 'for' loop is the most compact form of looping. It is a little trickier to understand, but is a bit more

convenient to use and quicker to write. For the purposes of this introduction, the ‘for’ loop can be

thought of like this:

for (initialise counter; test if condition is true; increment counter)

 { execute these statements; }

 The loop initialisation statement is executed before the loop begins, and sets the counter to a

starting value

 The test statement tests whether a given condition is true or not. If the condition is true, the

statements inside the loop will be executed, otherwise the loop will end

 The iteration statement increases or decreases the counter.

2.10.4 ‘for … in’ loop

The ‘for … in’ statement automatically loops through all the properties of an object or all the elements in

an array without the need to initialise, test the value of, and increment the counter. For example, this

code executes statements for each of the elements in the array ‘fruits’:

for (counter in fruits) { execute these statements; }

 Each element in an array is numbered; the elements of the array are referenced by counter.

2.11. Getting user input – input boxes

Input boxes are a common method of collecting user responses. (We have previously seen the Prompt

box method.) Input boxes are defined and positioned using html:

 <body>

 ...

 <input id="id" type="type" value="initial value">

 ...

 </body>

 The input boxes have three parameters: id, type, and initial value

 The type can be number, text, radio (button) or checkbox depending on the data required.

Note: html forms can be used as input boxes, but forms are really used for submitting the values to the
web server for processing. In this topic, we are only looking at processing done by the webpage.

Worked examples

12 Topic support guide 9626 Topic 19 Programming for the web

3. Worked examples

To introduce programming with JavaScript we’ll look at short examples that can be tried and modified.

This should help you understand the structure of a script and the effects of making changes. All the

files used and created are available from within the zip file from which you accessed this document.

3.1. Developing scripts

The ideal way to experiment with running and modifying scripts is to have a text editor open in one

window on your computer and a browser open in another. For the purpose of this tutorial the

screenshots will show Notepad++ and Internet Explorer. This simple arrangement allows you to write

and amend your JavaScript. Just resave the file and click the refresh on the browser toolbar.

The screenshot shown is the html template for an online quiz. The code to make the quiz interactive

can be added to the html between the <script> </script> tags. The <script> tag alerts the browser

program to start interpreting all the text between these tags as a script.

It is quite usual to place the script between the </title> and the </head> tags but the script can appear

anywhere in the <body> and <head> sections. It is preferable for the code to be located at the top or

the bottom of the html as this makes it easier to find.

Note: You may see examples that use a type attribute <script type="text/JavaScript">. This is no longer
required, as JavaScript is the default scripting language in html.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 13

3.2. Debugging errors

When a program written in JavaScript has errors, we rarely see an error message to help in debugging.

For example, when writing a script in stages we may see each stage work until the last addition, and

then none of the stages are executed. However, most browsers have a Developer tools menu from

which you can start a debugger. (Pressing F12 brings up the debugger in Internet Explorer, Firefox and

Chrome.)

This is a view of the debugger for Internet Explorer. It tells us that the error that is stopping the script

working is on line 29, and that the problem is that the ‘value1’ variable is undefined.

The script used ‘var value1’ and ‘var value2’ so these are defined as local variables, and are not

available outside the function in which they are declared.

3.3. Alerts

We’ll start with getting a webpage to display an alert box.

Enter the following code between the script tags in the file ‘Blank_html_template.html’:

<script>

//Display an alert box

alert ("Hello World. This is an Alert Message!");

</script>

Save the file as ‘Alert.html’

Worked examples

14 Topic support guide 9626 Topic 19 Programming for the web

Loading or refreshing the testing template webpage activates the alert automatically. Notice that you

have to acknowledge the alert by clicking ‘OK’ before the script can continue or in this case conclude.

We will now look at what happens if you omit a semicolon at the end of a JavaScript statement. Try

using the following on one line:

alert ("Hello World. This is an Alert Message!"); alert ("Hello Internet. This

the 2nd. Alert Message!");

In this case the browser sees two statements and the script works.

Now try with the first ‘;’ missing:

alert ("Hello World. This is an Alert Message!") alert ("Hello Internet. This

the 2nd. Alert Message!");

In this case the browser sees only one statement and cannot interpret it.

Note: To display line breaks inside a popup box, use ‘\n’:

alert ("Hello World.\nThis is an Alert Message");

3.4. Variables

Copy the following code into the <script> section of ‘Blank_html_template.html’, save the file as

‘Variables.html’ and load it in your browser.

<script>

var length1=5;

var length2=7;

var Perimeter = 2*(length1 + length2);

document.write(Perimeter);

</script>

Note: document.write() will place the value of the variable in the webpage.

You should see the answer ‘24’ displayed. Note that we have no control over where the answer is

displayed at the moment.

Programming challenge:

Try using multiple alerts like this:

alert ("Hello World. This is an Alert Message!");

alert ("Hello Internet. This the 2nd. Alert Message!");

alert ("Hello World Wide Web. This the 3rd. Alert Message!");

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 15

Experiment by changing the values assigned to length1 and length2. (Remember to resave the file

and refresh your browser each time.)

3.5. Getting user input – prompt boxes

In the example above, the values used in the calculation are typed in the script. The following script

uses prompt boxes so that the user can input values

Copy the following script into ‘Blank_html_template.html’ and save as ‘Prompts.html’:

<script>

 var value1 = prompt ("1st number", 0);

 var value2 = prompt ("2nd number",0);

 document.write(value1 * value2);

</script>

Note: document.write () can display the result of calculations.

When we load the page we should see the first prompt box:

Enter the number ‘7’ and click ‘OK’. We’ll then see the second prompt box:

Enter the number ‘6’ and click OK. The browser should display the answer 42 (7 x 6).

Now amend the script to:

<script>

var value1 = prompt ("1st number", 0);

var value2 = prompt ("2nd number",0);

document.write(value1 + value2);

</script>

Study challenge:

 Find out what words are reserved in JavaScript

 Find the difference between a global variable and a local variable

 Investigate array variables.

Worked examples

16 Topic support guide 9626 Topic 19 Programming for the web

Notice that the browser now displays 76! This is because the JavaScript default type for variables is

text and the ‘+’ sign is used to concatenate text. In the first example, JavaScript saw the ‘*’ operator

and so knew to multiply numbers. In the second example, JavaScript saw the ‘+’ operator and used the

default concatenate method.

We can ‘trick’ JavaScript into treating the ‘+’ operator as the sum method.

Amend the script as follows:

<script>

var value1 = 1*prompt ("1st number", 0);

var value2 = 1*prompt ("2nd number",0);

document.write(value1 + value2);

</script>

Now Javascript has to treat the values as numbers and so adds them.

3.6. Displaying output

3.6.1 Bookmarks

Using the document.write() function as above is unsatisfactory. It is normally only used for testing

purposes. We need to tell the browser where to place the results of our program by adding a bookmark

id.

Look at the following extract of html:

<body>

<div align="center">

<h1>Beginning JavaScript</h1>

<h1>5 + 7 = </h1>

<!-- This is where we want the result of our script to be displayed -->

<h2 id="Answer here"></h2>

<p>New paragraph</p>

</div>

The following script will display the answer at the ‘Answer here’ bookmark:

<script>

document.getElementById("Answer here").innerHTML = 5 + 7;

</script>"

</body>

Copy the relevant parts of the code into ‘Blank_html_template.html’and save the file as ‘Outputs.html’.

Load the page in your browser. The result of the script is now placed exactly where we specified:

Study challenge:

Find out about the parseInt() and parseFloat() functions.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 17

3.6.2 Alerts

We can also display resulting variable values as an alert. Let’s use the script from the ‘Prompts.html’

file again but replace the document.write(value1 + value2) statement with an alert.

<script>

var value1 = 1*prompt ("1st number", 0);

var value2 = 1*prompt ("2nd number",0);

alert (value1 + value2)

</script>

Save the file as ‘PromptsAlert.html’, load the webpage and enter the values when prompted. The alert

dialog displays the answer.

We can add text to the alert:

alert (value1 + value2 + " is the answer")

Programming challenge:

Experiment by moving the id bookmark to a new position – below the ‘New paragraph’ for example.

Worked examples

18 Topic support guide 9626 Topic 19 Programming for the web

3.7. Functions

All the JavaScript up to now has executed as soon as the webpage has loaded or been refreshed.

3.7.1 Functions example 1

Copy the following into the script section of ‘Blank_html_template.html’ and save the file as

‘Greeting1.html’. We don’t need any parameters for this function:

function Greeting() {alert ("Hi there");}

When you load the file nothing happens. We need to add a button to the webpage, in the body section

of the html, to execute or call the function:

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

 <!-- This is will display a button we can click to execute the function -->

 <button type="button" onClick="Greeting()">Click me</button>

</div>

<script>

 function Greeting() { alert("Hi there");}

</script>

</body>

Resave the file and load it in your browser. You should see:

Clicking the button will display the message:

Because the button executes the Greeting()function you’ll get the message every time you click

‘OK’ and ‘Click me’ again.

We have seen three ways to display results: alerts, document.write() and bookmarks

(document.getElementById().innerHTML). Let’s try using document.write(). Amend the script as shown

and save the file as ‘Greeting2.html’:

<script>

function Greeting() { document.write("Hi there");}

</script>

Programming challenge:

Try: alert ("The answer is " + value1 + value2)

You should now be able to explain why it doesn’t give the correct result and be able to fix the
problem.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 19

This time we get just the greeting text – the original page contents are gone! There is no button to click.

That’s the big disadvantage of using document.write() in a function: it rewrites the entire page,

losing the original html.

We’ll have to use the document.getElementById().innerHTML method. We’ll need a bookmark

to tell the browser where to write the message. Let’s put the bookmark under the button:

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

 <button type="button" onClick="Greeting()">Click me</button>

 <!-- This is where we want the message to be displayed -->

 <h2 id="Message"></h2>

</div>

Now we can amend the script:

<script>

 function Greeting()

 {

 document.getElementById("Message").innerHTML="Hi there";

 }

</script>

</body>

Note: This layout for the function is more common. It makes each component clear. Spaces and blank
lines are ignored and a good text editor like Notepad++ prompts you with correct spelling and indicators
to complete syntax such as closing the () and { } brackets.

The function will now place the text ‘Hi there’ at the Message bookmark. Save the file as

‘Greeting3.html’ and load the webpage. This time, clicking the button displays the message within the

webpage:

Repeated clicking doesn’t appear to do anything, but it is in fact rewriting the message every time.

Worked examples

20 Topic support guide 9626 Topic 19 Programming for the web

Let’s try showing and hiding the message by clicking buttons. Amend the ‘Greeting3.html’ page as

shown below and save the file as ‘ShowHide.html’:

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

 <button type="button" onClick="Show()">Show me</button>

 <button type="button" onClick="Hide()" > Hide me </button>

 <h2 id="Message"></h2>

 </div>

<script>

 function Show()

 {

 document.getElementById("Message").innerHTML="Hi there";

 }

 function Hide()

 {

 document.getElementById("Message").innerHTML=""

 }

</script>

</body>

The new Hide()function writes the "" empty string at the Message bookmark when the ‘Hide me’

button is clicked.

3.7.2 Functions example 2

Let’s go back and look at the ‘PromptsAlert.html’ file again:

<body>

 <div align="center">

 <h1>Beginning JavaScript</h1>

 </div>

<script>

 var value1 = 1*prompt ("1st number", 0);

 var value2 = 1*prompt ("2nd number",0);

 alert("The answer is "+ value1 + value2)

</script>

</body>

When the file is loaded in the browser the prompts to enter the numbers appear straightaway. This isn’t

very satisfactory. Let’s write one function to initiate the prompts and another to multiply the values.

Let’s also add two buttons to the html: one button to call the function that initiates the prompts to enter

the numbers, and another to initiate the function that displays the alert showing the answer.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 21

Here we add the two buttons in the body of the html:

<body>

 <div align="center">

 <h1>Beginning JavaScript</h1>

 <button type="button" onClick="inputs()">Enter the

 numbers</button>

 <button type="button" onClick="multiply()">Multiply the prompt

 values</button>

 </div>

Here we write the functions for each button to call. The variables value1 and value2 are declared as

global variables so that they can be used in other parts of the script. Amend the file and save it as

‘MultiplyPrompts.html’:

<script>

 function inputs()

 {

 value1 = 1*prompt ("1st number", 0);

 value2 = 1*prompt ("2nd number",0);

 }

 function multiply()

 {

 alert ("The answer is " + (value1 * value2))

 }

</script>

</body>

3.8. Operators

Let’s look at an example script for the conditional operator ‘?’ which was introduced in Section 2.8. In

this program, the user has to guess a number between 1 and 10. The correct answer is set to 8 and we

use a prompt box for the user to enter a guess. Depending on whether the user guesses correctly, they

will get a different message.

Programming challenge:

This challenge revises what we have learnt so far.

Use the ‘MultiplyPrompts.html’ file and:

 amend the code to display the numbers entered in the prompts on the page

 amend the code so the answer is displayed on the webpage instead of using an alert

 amend the code so that the numbers and the answer show as an equation. e.g. 12 x 9 = 108.

Worked examples

22 Topic support guide 9626 Topic 19 Programming for the web

Copy the script into ‘Blank_html_template.html’. Save the file as ‘Guessgame.html’.

<script>

var target = 8;

var guess = prompt ("I’m an integer between 1 and 10\n Guess me", 0);

var result = (guess == target) ? "Brilliant! Good guess.":"Sorry your guess was

wrong.";

document.write(result);

</script>

3.9. Conditional statements

3.9.1 ‘if’ statements

Here's an example of an ‘if’ statement:

var question = prompt("Would you like to pause?", "Type yes or no");

if (question == "yes" { alert ("Paused. Click ok when you’re ready.");}

Note: The "==" operator in the condition means ‘equals’ as we’ve seen in Section 2.8. A common

mistake is to use a single "=" which would mean that the variable ‘question’ is assigned the value ‘yes’
and so the ‘if’ condition will not work.

It is also worth noting that conditions can be combined using the logical operators ‘AND’ and ‘OR’,

(‘&&’ and ‘||’) that are detailed in Section 2.8.

Here's an example of an ‘if’ statement that combines logical operators:

if (age >= 21 && age < 30) {statement to run if the condition is true};

The above specifies that the statement in curly brackets will run if the age is greater or equal to 21,

AND less than 30.

3.9.2 ‘if … else if’ statements

Here’s a section of the html to display a webpage quiz:

<body>

 <div align=“center">

 <h1>Beginning Javascript</h1>

 <h2> Which of the following is typically used for computer marked

 multichoice exams?</h2>

 Choose 1,2,or 3

 1. OCR

 2. OMR

 3. MICR

Programming challenge:

Add a ‘Try again’ button to the html section of the ‘Guessgame.html’ file and amend the
script to run when it is clicked.

Study challenge:

Investigate how to use the ! (Not) operator with the ‘greater than’, ‘less than’ operators.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 23

Here’s the script to make the page interactive. The tags are just to make the text bold:

<script>

 var Answer = prompt("Choose your answer 1, 2 or 3",0);

 if(Answer == 1){ document.write("No. OCR is for recognising Optical

 Characters");}

 else if(Answer == 2){ document.write("Yes. Optical Mark Recognition is

 correct");}

 else if(Answer == 3){ document.write("No. MICR is for recognising

 Magnetic Ink Characters");}

 else{ document.write("Unknown choice");}
</script>

Copy the relevant html and script into ‘Blank_html_template’, save the file as ‘if_else if.html’ and open

in your browser.

Here’s another example of a script using ‘if … else if’ statements that returns the grade for an exam

score. Copy the html and the script into ‘Blank_html_template.html’and save the file as ‘grades.html’.

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

 <h2> See your grade

<script>

 var Answer = prompt("Enter your score",0);

 if(Answer >=80){ document.write("Grade A - Brilliant work");}

 else if(Answer >=70){ document.write("Grade B - Well done"); }

 else if(Answer >=60){ document.write("Grade C - Pass"); }

 else if(Answer >=50){ document.write("Grade D - Missed a pass"); }

 else { document.write("Fail"); }

</script>

</div></h2>

</body>

Programming challenge:

Customise the ’if_else if.html’ page with your own alternative quiz with five choices and

responses.

Worked examples

24 Topic support guide 9626 Topic 19 Programming for the web

3.9.3 ‘switch’ statements

For an example of using the ‘switch’ statement, let’s have another look at our last ‘if._else if.html’ quiz

page. If we amend the script to use ‘switch’ it becomes much more simple.

Make the changes and resave the file as ‘Switch.html’:

<script>

 var Answer = prompt("Choose your answer 1, 2 or 3",0);

 switch(Answer)

 {

case "1": document.write("No. OCR is for recognising Optical

Characters");break;

case "2": document.write("Yes Optical Mark Recognition is

correct");break;

case "3": document.write("No MICR is for recognising Magnetic Ink

Characters");break;

 default: document.write("Unknown choice");

 }

</script>

If we try to amend the ‘grades.html’ file to use switch, however, we have problems with the numeric

conditions (>=80 etc). ‘If… else if’ is sometimes less trouble.

Programming challenge:

Add in marks and comments for grades E (poor) and F (Fail).

.

Programming challenge:

Amend your new five choices quiz to use switch.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 25

3.10. Loop statements

3.10.1 ‘while’ loop

Here's an example of a ‘while’ loop that prompts for a password until the correct password is typed in.

Copy the script into the ‘Blank_html_template.html’ and save the file as ‘Password.html’:

<script>

 //create variable

 var answer = "";

 while (answer != "password")

 {

 answer = prompt("Enter your password below: (hint: password =

 password)","");

 }

document.write("You're logged in")

</script>

 The variable answer is declared with no value ("") before the while loop; this prevents a script

error, as the while loop refers to the variable answer which has not yet been given a value from the

prompt ().

 The script states that while the response from the prompt is not equal (!=) to password it will

always run the prompt again.

 When the variable answer does equal password the loop terminates and the script moves on to the

document.write("You're logged in").

3.10.2 ‘do … while’ loop

Let's look at a harder example that counts up to eight. Remember that in ‘do … while’ loops, the code

will be executed at least once, as the test is done after the ‘do’ statements. Copy the script into

‘Blank_html_template.html’ and save the file as ‘do_while.html’:

<script>

 var start_at = prompt("What shall I start at?",0);

 do {document.write(start_at+"
") ;start_at++}

 while (start_at <9);

</script>

Programming challenge:

Create a prompt to set an ‘end_at’ variable to replace the ‘<9’ condition.

Make sure the script displays the numbers up to and including the ‘end_at’ value.

Worked examples

26 Topic support guide 9626 Topic 19 Programming for the web

3.10.3 ‘for’ loop

Here's the script from ‘forLoop.html’ that produces the display shown when we enter ‘0’ and ‘6’ in the

prompts:

<script>

 var start_at = prompt ("What shall we start at?",0);

 var end_at = prompt ("what shall we end on?",0);

 document.write("Count starts at " + start_at +"
");

for (start_at; start_at < end_at; start_at++){document.write(start_at

+"
");}

document.write("Count ends at "+end_at)

</script>

Programming challenge:

Amend the code to display the correct values as shown:

As the ‘for’ loop uses a counter we can count through the elements of an array. The elements in the

array ‘fruits’ are numbered from 0 to 3.

This script uses the ‘for’ loop to write out each of the elements in the array on a new line:

<script>

 var fruits = ["Apple","Banana","Cherry","Damson"];

 var x;

 for(x = 0; x < 4; x++)

 {

 document.write(fruits[x] + "
”);

 }

 </script>

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 27

Note: In this script we used ‘x<4’ as the condition in the test statement. We had to count the number of
items in the array to determine this value. We can get JavaScript to count the items in an array for us
using: var x= fruits.length;

3.10.4 ‘for … in’ loop

Let's compare the use of the ‘for … in’ loop, which automatically loops through all the properties of an

object or all the elements in an array, with the ‘for’ loop we looked at above. This script from

‘forInLoop.html’ achieves the same results:

<script>

 var fruits = ["Apple","Banana","Cherry","Damson"];

 var x;

 for (x in fruits) {document.write(fruits[x] + "
");}

</script>

3.11. Displaying output – further practice with bookmarks

Apart from adding buttons and bookmarks, we have not looked at the html, but we need to spend a

little more time to make sure we can use the document.getElementById().innerHTML method when

needed.

For simplicity, until now we've displayed most output with document.write() as it made the code easier

to understand. This is not good practice as we're not in control of where the output is placed on the

page and we cannot format it. We need to specify where the output is displayed and be able to apply

suitable formatting. (We also saw that using document.write() within a function rewrote the entire page,

losing the original html.)

Let's revisit some of the examples above and display the output at a bookmark.

This is the original script for the password prompt box:

<script>

 //create variable

 var answer = "";

 while (answer != "password")

 {

 answer = prompt("Enter your password below: (hint: password =

 password)","");

 }

document.write("You're logged in")

</script>

Programming challenge:

Use the array aquatics=["Alligator","Beaver","Caiman","Dolphin",”Eel","Flounder", "Gar"];
and amend the script to count the items in the array and set the condition in the test
statement.

Worked examples

28 Topic support guide 9626 Topic 19 Programming for the web

This version has been amended to display the text ‘You're logged in’ at the bookmark ‘OutputHere’ in

the body of the html under the title. The instruction to display the text ‘You're logged in’ is executed

when the loop terminates. The text is in the html body so it can be formatted using style h2:

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

<h2 id ="OutputHere"> </h2>

 </div>

<script>

 //create variable

 var answer = "";

 while (answer != "password")

 {

 answer = prompt("Enter your password below: (hint: password =

password)","");

 }

 document.getElementById("OutputHere").innerHTML="You're logged in"

</script>

</body>

Let's try another. Here's the script for the original quiz using ‘switch’:

<script>

 var Answer = prompt("Choose your answer 1, 2 or 3",0);

 switch(Answer)

 {

case "1": document.write("No. OCR is for recognising Optical

Characters");break;

case "2": document.write("Yes Optical Mark Recognition is

correct");break;

case "3": document.write("No MICR is for recognising Magnetic Ink

Characters");break;

 default: document.write("Unknown choice");

 }

</script>

In order to display the resultant text where we want it and also to be able to format it we need to add

the bookmark in the body of the html.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 29

Here's the body of the html. You can see we've added the ‘OutputHere’ bookmark two lines (

)

under the list of options and formatted it in style h2:

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

 <h2> Which of the following is typically used for computer marked multichoice

exams?</h2>

 Choose 1,2,or 3

 <p>

 1. OCR

 2. OMR

 3. MICR

 </p>

 <h2 id="OutputHere"> </h2>

 </div>

<script>

 var Answer = prompt("Chose your answer 1, 2 or 3",0);

 switch(Answer)

 {

 case "1": document.getElementById("OutputHere").innerHTML="No. OCR is

 for recognising Optical Characters";break;

 case "2": document.getElementById("OutputHere").innerHTML="Yes Optical

 Mark Recognition is correct";break;

 case "3": document.getElementById("OutputHere").innerHTML="No MICR is

 for recognising Magnetic Ink Characters";break;

 default: document.getElementById("OutputHere").innerHTML="Unknown

 choice";

 }

</script>

</body>

3.12. Getting user input – input boxes

This was the script ‘Prompts.html’ used to multiply two numbers:

<script>

 var value1 = prompt ("1st number", 0);

 var value2 = prompt ("2nd number",0);

 document.write(value1 * value2);

</script>

Worked examples

30 Topic support guide 9626 Topic 19 Programming for the web

Like bookmarks, input boxes are defined and positioned using html. Here's some of the html with the

additional input boxes. Open ‘Blank_html_template.html’ and add the following:

<body>

<div align="center">

<h1>Beginning Javascript</h1>

</div>

<p>
Please enter the numbers here:

1st number:

<!--1st input box -->

<input id="FirstNumber" type="number" value="">

2nd number:

<!--2nd input box-->

<input id="SecondNumber" type="number" value="" >

</p>

Note: the use of the non-breaking space (‘ ’) above is to prevent the browser closing up the

space between the first number entry and the second number entry.

Here's the script to carry out the multiplication:

<script>

 document.write(FirstNumber.value*SecondNumber.value)

</script>

The problem is that the script runs straightaway – before we get a chance to fill in the boxes. We need

to execute the script on demand. For this we'll need to make the script a function (‘Multiply’) and

assign it to a button like we did earlier.

Here's the relevant part of the html:

<body>

 <div align="center">

 <h1>Beginning Javascript</h1>

 </div>

 <p>Please enter the numbers here:</p>

 <p>First number:

 <input id="FirstNumber" type="number" value="">

 Second number:

 <input id="SecondNumber" type="number" value=""></p>

 <button type="button" onClick="Multiply()">Multiply the numbers</button>

 </p>

Here's the script using a function for the button to execute.

<script>

function Multiply()

{

document.write(FirstNumber.value*SecondNumber.value)

}

</script>

</body>

Now we'll see that the document.write() method overwrites the original html.

Worked examples

 Topic support guide 9626 Topic 19 Programming for the web 31

Save the script as ‘InputBox1.html’.

Programming challenge:

Use the document.getElementById().innerHTML method to display the result of the
calculation on the web page.

Study challenge:

Compare the use of input boxes as seen above with the use of html forms.

Further resources

32 Topic support guide 9626 Topic 19 Programming for the web

4. Further resources

This introduction has covered most aspects of the syllabus, but learners are likely to need to carry out

further study, as well as gaining more experience in programming. The following are recommended

sites:

www.codeacademy.com/

A complete online course

www.w3schools.com/

 A tutorial programme that can be also be used as a reference source

https://jsfiddle.net/

Provides a programming environment and a results window

https://notepad-plus-plus.org/

Notepad++ is a free download and has many features to speed up the development of scripts. It has an

autocomplete facility to speed up code entry and avoid typos. It also highlights bracket pairs to make

scripts more readable

The following are useful sites that provide online courses/tutorials:

www.tutorialspoint.com/javascript/index.htm

http://htmldog.com/

http://javascript.info/

www.learn-js.org/

www.javascriptkit.com/

www.homeandlearn.co.uk/JS/javascript.html

https://mva.microsoft.com/en-US/training-courses/javascript-fundamentals-for-absolute-beginners-

14194?l=DmF3TY1eB_9500115888

www.echoecho.com/

www.howtocreate.co.uk/tutorials/javascript/

For specific issues and difficulties, use a search such as ‘how to use radio buttons’ to take you to

examples and ‘try it yourself’ exercises.

http://www.codeacademy.com/
http://www.w3schools.com/
https://jsfiddle.net/
https://notepad-plus-plus.org/
http://www.tutorialspoint.com/javascript/index.htm
http://htmldog.com/
http://javascript.info/
http://www.learn-js.org/
http://www.javascriptkit.com/
http://www.homeandlearn.co.uk/JS/javascript.html
https://mva.microsoft.com/en-US/training-courses/javascript-fundamentals-for-absolute-beginners-14194?l=DmF3TY1eB_9500115888
https://mva.microsoft.com/en-US/training-courses/javascript-fundamentals-for-absolute-beginners-14194?l=DmF3TY1eB_9500115888
http://www.echoecho.com/
http://www.howtocreate.co.uk/tutorials/javascript/

Class and homework activities

 Topic support guide 9626 Topic 19 Programming for the web 33

5. Class and homework activities

5.1. Theory questions

1. What is the symbol(s) to comment out one line in JavaScript?

a. //This is a comment
b. **This is a comment
c. %% This is a comment
d. ** This is a comment **

2. How do you create a variable x that is equal to the string "Hello"?

a. string x = "Hello";
b. var x = "Hello";
c. text x = "Hello";
d. strings x = "Hello

3. Is JavaScript a case-sensitive language?

a. yes
b. no

4. How do you create a variable x that is equal to the integer 4?

a. int x = 4;
b. num x = 4;
c. var x = 4;
d. number x = 4;

5. The variable x is already defined and equals 4. Now, if the statement is "document.write(x++);",

what would be displayed in the browser?

a. 4
b. 5
c. 3
d. 44

6. If x equals 7, and the only other statement is x = x % 3, what would be the new value of x?

a. 7
b. 3
c. 4
d. 1

7. Which of the following is not a comparison operator used in an if statement?

a. ==
b. !=
c. *=
d. <=

Class and homework activities

34 Topic support guide 9626 Topic 19 Programming for the web

8. What is the keyword used inside a switch statement to create a condition?

a. case
b. condition
c. if
d. else

9. What is the keyword to define a function in JavaScript?

a. def
b. func
c. function
d. none of the above

10. Which of the following is an acceptable declaration of a for loop?

a. for(var i = 0; i < 5; i++)
b. for(var i = 0, i < 5)
c. for(i < 5)
d. for(var i = 0, i < 5, i++)

11. In a do while loop, which of the following is correct?

a. The do statement is only executed if the while statement is correct.
b. The while statement precedes the do statement.
c. The do statement might not always be executed.
d. The do statement is always run at least once.

12. What statement can you use to completely exit a loop and continue on through your code?

a. break
b. exit
c. continue
d. forward

13. What is a correct way to get an html element by its id?

a. document.getElementsByID
b. document.getElementsById
c. document.getElementByID
d. document.getElementById

14. How would you get the number of characters in the string variable example?

a. example.length
b. example.count
c. example.len
d. example.number

15. How do you create an array in JavaScript?

a. var example = ('aa', 'bb');
b. var example = array('aa', 'bb');
c. var example = new Array ('aa', 'bb');
d. var example = new array ('aa', 'bb');

Class and homework activities

 Topic support guide 9626 Topic 19 Programming for the web 35

5.2. Programming tasks

1. The solution for the ‘grades.html’ example is flawed.

a) Amend the script so that it displays an error message when a number greater than 100 is

entered.

b) Add a button to allow another entry to be processed.

2. Open the ‘Quiz.html’ file in your browser. The ‘Test your answers’ button should call a function to

count the number of correct answers.

a) Add the necessary code to the file. The script should display the number of correct answers

and the percentage correct at the bottom of the quiz.

b) Amend the script to include five questions.

Amend the script to add the text ‘Well Done’ if all questions were answered correctly or ‘Try

again’ if not.

c) Add a hyperlink to ‘Try again’ to reload the page.

3. Open the ‘Widgets.html’ file in your browser. The ‘Review Order’ button should call a function

named ‘Acknowledge()’ to display the details of the order and the cost of the order in a new

window.

